LLM 學算術

上週一位前同事貼了篇文章:

看一個YouTube 影片測試Gemini and Chatgpt, 一個簡單的邏輯問題,一瓶汽水一元,兩個空瓶可以換一瓶新的汽水,請問20元可以喝到幾瓶汽水,兩個都答錯,

原本以為寫程式是個邏輯能力的展現,但是GenAI 邏輯不好為何可以寫程式呢?

然後臉友們試了各個 LLM, 沒有一個可以正確解答這題. 我試的 copilot 一開始答錯, 算出 30 瓶也就罷了. 提示它這是個遞迴的問題, 它竟然回答:

你說得對,這確實是一個遞迴的問題。讓我們再次計算一下,…

總結來說,你可以喝到無限多瓶汽水,只要你不停地用兩個空瓶換取新的汽水。

希望這個解答對你有幫助!

那麼正解是什麼呢? 簡單的解法是使用 chain of thought (COT), 很像是建構式數學. 我們要按照人類的思路一步一步地教它. 雖然我下面的描述提到一點 Action, 而不是純 Reaseon, 但 RecAct [3] 才是終極版結合 reason 和 action 的提示方式.

  1. 首先 20 元可以買 20 瓶汽水.
  2. 喝完 20 瓶汽水得到 20 個空瓶, 可以換 10 瓶新的汽水.
  3. 喝完 10 瓶汽水又得到 10 個空瓶, 可以換 5 瓶汽水.
  4. 喝完 5 瓶汽水又得到 5 個空瓶, 可以換 2 瓶汽水, 奇數的汽水產生一個空瓶還沒有兌換.
  5. 喝完 2 瓶汽水又得到 2 個空瓶, 可以換 1 瓶汽水.
  6. 喝完 1 瓶汽水又得到 1 個空瓶, 加上還沒兌換的 1 個空瓶, 又可以換一瓶汽水.
  7. 喝完 1 瓶汽水又得到 1 個空瓶 沒有還沒兌換的空瓶, 不能再喝了.

However, Copilot 無法學會. 繼續堅持 30 瓶的答案. 這招對它無效. 但是 ChatGPT 學得會 20 元的例子. 但改問它 10 元, 30 元可以喝幾瓶就沒辦法了.

根據我的理解, LLM 不是 encoder only, decoder only, 就是 encoder + decoder. 無論哪一類模型, 都要把文字轉向量. 在向量空間中, 類似的詞都有類似的向量. 所以狗, 犬, 㹴的向量都彼此靠近, 和貓距離比較遠. 以 encoder 類 LLM 來說, training 時隨機遮掉句子中的一個詞, 讓 LLM 學習填空. 學得再不完美, 關鍵字也會是同義字.

但是數字 1,2,3,4… 就沒有相關性了. 它本身沒意義, 很多個 1 也比 1 個 9 大 (11111…111 > 9). 因此看到數學很容易胡說八道, 但背公式可以.

想要徹底解決 LLM 數學不好的問題, 是採用 program-aid Language (PAL) model [1]. 也就是說, 我們叫 LLM 寫個小程式, 把原理寫成註解, 計算寫成數學式. 把這整個當作 prompt, LLM 應該就能學會了.

我不打算暗示 LLM 怎麼寫出 Python script, 於是我試著這樣問:

一瓶汽水一元,兩個空瓶可以換一瓶新的汽水,請問20元可以喝到幾瓶汽水?

# 一瓶汽水一元

Buy_bottle = money / 1

# 喝汽水

Used_bottle = buy_bottle

#  假如 used_bottle != 0, 兩個空瓶可以換一瓶新的汽水

While  used_bottle >= 2, do the following calculation

If used_bottle %2 = 0, buy_bottle += use_bottle / 2, used_bottle = 0

Else if used_bottle %2 = 1,  buy_bottle += use_bottle / 2,  used_bottle = 1

Answer = buy_bottle

結果 ChatGPT 算出 45 瓶, 因為它換過的汽水瓶又拿去換. 反倒是 Copilot 比較好一點. 雖然功敗垂成, 但是好歹它有聽進去我的話了~~~ 當然我的提示也有容易誤解的地方, 當我想寫得更詳細, 它卻答得更差. 所以我只能保留這一版.

這個問題是一個經典的換瓶問題,可以通過迭代計算來解決。讓我們根據你提供的算法來計算一下:

  1. 首先,用20元可以買到20瓶汽水。
  2. 喝完這些汽水後,你會有20個空瓶。
  3. 根據算法,每兩個空瓶可以換一瓶新的汽水,所以你可以換10瓶新的汽水。
  4. 現在你又有10個空瓶,可以再換5瓶新的汽水。
  5. 接著你又有5個空瓶,可以換2瓶新的汽水,並且還剩下一個空瓶。
  6. 最後,你可以用剩下的3個空瓶(之前剩下的1個加上剛換的2瓶的空瓶)換1瓶新的汽水。

所以,總共可以喝到的汽水數量是:

20+10+5+2+1=38 瓶汽水。

因此,用20元可以喝到38瓶汽水。🥤

自己都說是經典了還這樣. 那麼還有別招嗎?

有的. 這個技術的總稱叫做 LangChain [2]. LangChain 是個模組化的架構, 讓 LLM 更容易和應用程式結合. 它可以有很多 agent, 每個 agent 有自己的 memory, tools, 和 prompt template. 可以針對複雜的 prompt 拆成不同的屬性, 各自用適合的 tool 去處理. 至於 tool 最後會做什麼事情, 不是預先設定好的, 而是根據 LLM 的輸出決定的.

既然 LangChain 有個 chain 字, 我就從網路上找個 agent 內部有 chain 的圖示意.

本圖取材自 https://www.langchain.cn/t/topic/35

再回溯 Chain of Thought (COT) 和另外一個 Tree of Thought (TOT), 前者也提到chain, 他們和 LangChain 又是甚麼關係呢? 它們都只是輔助 LLM 推理的方法, COT 就是 step by step, TOT 就是找不到方法是會換一條思路. 它們都只是強調推理 (reason) 的部分, 有 action 才會去執行指令, 做成可互動的應用程式 (ReAct) [3].

[REF]

  1. https://arxiv.org/abs/2211.10435
  2. https://www.langchain.com/
  3. https://react.dev/

關於 LLM 的自我審查

先前用過 ChatGPT 3 的人應該都記得這些 Model 動不動就說自己不知道, 不能說, … 但變個花樣問, 不能說的又全說了!

那麼 LLM 怎麼做到自我審查呢? 基本的做法是 RLHF (Reinforcement Learning from Human Feedback) [1], 也就是靠人類的意見來約束 LLM. 但我們不知道 LLM 會被問什麼問題, 總不能一筆一筆叫網路警察來核准吧! 所以我們先根據真人的反饋, 來建立一個獎勵模型 (reward model), 以後就叫 reward model 來代替人工.

當大量的問題, 都有被人類標記為優選的答案, 他們就是一個標準答案 reward model. 它其實也是一個 LLM, 但我們先忘記這件事. 下面講到 LLM 都是指那未經自我審查 / fine tune 的 LLM.

顯然地, 我們拿 LLM 的標準問題 prompt 以及輸出 completion對, 去和 reward model 的標準 prompt + completion 比較, 計算兩者 logits 層 (未經 softmax 之類 activation function 的原始輸出) 的差異, 就知道這個 LLM 回答得像不像人? 然後把 LLM 的 logits 往人類標記的方向調整 [註 A], 就會讓 LLM 的答案愈來愈像人的回答.

我們也可以叫 reward model 標記 LLM 的輸出是否有害? 例如做個 remodel model 專門學 LLM 的輸出是否拉高仇恨值? LLM 答題主要依據 helpful, honest, 和 harmless 三原則. 身為一個機器人, 誠實是基本的. 不能出現言語傷害 (harmless 原則), 也不能因為怕講錯話而淨說沒用的廢話 (helpful 原則) [註 B].

本圖取材自 https://primo.ai/index.php?title=Reinforcement_Learning_(RL)from_Human_Feedback(RLHF

上面的論述略過了好幾段段情節, 在此補充:

[註 A] Reward model 怎麼微調 LLM 參數. 目前常用的一個演算法是 PPO (proximal policy optimization). 我們將它理解為可以調整參數, 但一次不要調太多, 免得把辛苦 train 了半天的 model 調壞. 因此就算要調整, 也是利用 PEFT (Parameter-Efficient Fine-Tuning) 的做法, 包括有名的 Lora.

[註 B] 為避免 Reward model 把 LLM 帶偏, 變成只求不出錯就好, 我們同樣限制調整過的參數和原本的參數 (reference model or frozen model) 不能差太多. 可用的演算法包括 Kullback-Leibler (KL) divergence, 它可以用 softmax 的輸出來比較像不像, 所以根本不用管輸出的 token 是啥以減少計算量. 它可以跟 reward model 共存.

最後, 不免有人會問, 如果一定要有 Human 才能幫 LLM 做思想審查, 是不是太不 AI 了. 沒錯! 其實 Human 也可以換成 AI. 但我們不會叫小學生去教小學生, 我們先叫 LLM 產生一堆負面教材, 然後 train LLM 避免生成這些仇恨、色情、暴力的言論即可. 於是乎, 當我們問 LLM, 不可以上那些色情網站時, 這些剛好都是 RLAIF (Reinforcement Learning from AI Feedback) 的紅隊演練考題, 因此他們侃侃而談, 不知道中計! 當然, 這已經是過去式了~~

[REF]

  1. https://huggingface.co/blog/rlhf
  2. https://huggingface.co/docs/peft/index

Jinja 小註解

想去日本玩, 趁機了解一下神社 (Jinja). 不同於普通的神社, 這個神社是 Python 的一個程式庫, 現在已經有 Jinja 2.

Jinja 主要用在建立 template, 例如產生動態網頁. 可替換的字串會在 template 中用 {{}} 包起來. 引用時指定這個字串等於某筆資料就行了.

import pandas as pd
from jinja2 import Environment, FileSystemLoader

# Create a simple DataFrame
data = {
    'Name': ['John', 'Anna', 'Peter', 'Linda'],
    'Age': [28, 34, 29, 32],
    'City': ['New York', 'Paris', 'Berlin', 'London']
}
df = pd.DataFrame(data)

# Define a Jinja template
template = """
<table>
    <thead>
        <tr>
            <th>Name</th>
            <th>Age</th>
            <th>City</th>
        </tr>
    </thead>
    <tbody>
        {% for _, row in df.iterrows() %}
            <tr>
                <td>{{ row['Name'] }}</td>
                <td>{{ row['Age'] }}</td>
                <td>{{ row['City'] }}</td>
            </tr>
        {% endfor %}
    </tbody>
</table>
"""

# Create a Jinja environment
env = Environment(loader=FileSystemLoader('.'))
template = env.from_string(template)

# Render the template with the DataFrame
html_table = template.render(df=df)
print(html_table)

上面的 code 執行後得到一段 HTML. 用 browser 開啟就會顯示下面的表格.

NameAgeCity
John28New York
Anna34Paris
Peter29Berlin
Linda32London

當然, 如果這些資料要 hard code 在 Python 裡面就很 low 了. 我們應該是從一個隨時變動的資料庫中讀出他們, 然後靠著 Jinja 做出動態更新的 HTML 網頁.

另外我們可以在 in-context learning 時教導 LLM 要做的事. 像是給它一個範例. 下面的 code 使用了 DEFAULT_KEYWORD_EXTRACT_TEMPLATE_TMPL 這個 template. 中間 text (紅字) 和max_ keywords (藍字) 是每次可置換的.固定的部分在於 告訴 LLM 說只能輸出用 comma (,) 分開的關鍵字. 不包括 stop word (如標點符號, 介係詞之類的).

from jinja2 import Template

# Define the template
DEFAULT_KEYWORD_EXTRACT_TEMPLATE_TMPL = Template(
    "Some text is provided below. Given the text, extract up to {{ max_keywords }}"
    " keywords from the text. Avoid stopwords.\n"
    "---------------------\n"
    "{{ text }}\n"
    "---------------------\n"
    "Provide keywords in the following comma-separated format: 'KEYWORDS: <keywords>'\n"
)

# Generate the prompt
def generate_prompt(text, max_keywords=5):
    return DEFAULT_KEYWORD_EXTRACT_TEMPLATE_TMPL.render(text=text, max_keywords=max_keywords)

# Example usage
prompt = generate_prompt("Jinja2 is a popular templating engine in the Python ecosystem.", 3)
print(prompt)

這個 example 輸出的長相如下:

Some text is provided below. Given the text, extract up to 3 keywords from the text. Avoid stopwords.
---------------------
Jinja2 is a popular templating engine in the Python ecosystem.
---------------------
Provide keywords in the following comma-separated format: 'KEYWORDS: <keywords>'

RAG 小註解

Rag 聽起來就像一塊破布. 但是在 AI 領域還滿紅的! 不同於普通的破布, 這個 RAG 是 Retrieval Augmented Generation 的縮寫. 看 keyword 就知道包括檢索 – 增強 – 生成. 整個功能的目標還是做生成式 (generative) AI.

那麼和普通的 LLM 差在哪裡呢? 普通的 LLM 學習了大量的知識, 但是可能有些專業領域沒學到, 或是還可以加強, 這時候就會用 RAG.

首先我們要把這些 “新知" 進行編碼, 在自然語言處理當中會用到 Embedding 技術, 把普通的文字轉換成向量. 此處我們既然想依賴既有的 LLM model, 當然我們要把我們新知和 LLM 的習知, mapping 到同一個空間去! 此時就用到了增強 ( augmented ) 這部分.

Step 1: 找到 Embedding 模型

from sentence_transformers import SentenceTransformer
encoder = SentenceTransformer('一個 EMBEDDING 模型')

Step 2: 為新知建立向量空間

這裡有個熱身的步驟, 先在 memory 當中產生一個 instance.

from qdrant_client import QdrantClient, models
qdrant = QdrantClient(":memory:")

接下來就可以設定新知的參數, 主要是 size 和 distance.

qdrant.recreate_collection(
    collection_name="新知的名稱",
    vectors_config=models.VectorParams(
        size=encoder.get_sentence_embedding_dimension(),
        distance=models.Distance.COSINE
    )
)

Step 3: 把新知的內容搬到向量空間.

其中 data 當然就是由 index (idx) 和 doc 組成.

qdrant.upload_records(
    collection_name="新知的名稱",
    records=[
        models.Record(
            id=idx,
            vector=encoder.encode(doc["新知的內容"]).tolist(),
            payload=doc
        ) for idx, doc in enumerate(data)
    ]
)

Step 4: 以文字在向量空間檢索 (retrieval) 得分最高的新知.

answer = qdrant.search(
    collection_name="新知",
    query_vector=encoder.encode("針對新知的問題").tolist(),
    limit=1 # 想要前幾高分的回答, 例如 1,3,5 
)

for ans in answer:
    print(ans.payload, "score:", ans.score)

由於這個新知的 database 知道的東西比較偏門, 它怎麼跟大語言模型共用呢? 答案就是把上述 RAG 的結果當作 LLM 的提示, 這樣 LLM 就會去 RAG 的輸出找答案.

Step 5: RAG 跟 LLM 互助合作

底下是叫 Copilot 寫的範例. 示意 RAG 的結果被 LLAMA2 拿去參考. 實用性不高, 但畢竟整合起來了.

search_results = [ans.payload for ans in answer] # 上面的新知

# Import necessary libraries
import os
import pinecone
from langchain.llms import Replicate
from langchain.vectorstores import Pinecone
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain

# Set your API keys
os.environ['REPLICATE_API_TOKEN'] = "YOUR_REPLICATE_API_KEY"
pinecone.init(api_key='YOUR_PINECONE_API_KEY', environment='YOUR_PINECONE_ENVIRONMENT')

# Initialize Llama-2 components
replicate = Replicate()
pinecone_store = Pinecone()
text_splitter = CharacterTextSplitter()
embeddings = HuggingFaceEmbeddings()
retrieval_chain = ConversationalRetrievalChain()

# Example query from the user
user_query = "What are the health benefits of red wine?"

# Retrieve relevant information from search_results (assuming it contains relevant data)
relevant_data = search_results  # Replace with actual relevant data

# Process the user query
query_vector = embeddings.encode(text_splitter.split(user_query))

# Retrieve relevant responses using the retrieval chain
retrieved_responses = retrieval_chain.retrieve(query_vector, pinecone_store)

# Generate an answer based on the retrieved responses
answer = replicate.generate_answer(user_query, retrieved_responses, relevant_data)

print(f"Chatbot's response: {answer}")

用這個方法, 就不需要重 train 大語言模型, 也不影響 LLM 原本的實力. 但看官一定可以發現, 同一個問題必須分別或是依序丟給 RAG 和 LLM, 此時 RAG 才能產出東西給 LLM 當小抄 (in-context prompting). 這就是它的缺點.

使用 Vector Store 並非唯一的方式, 想要學習 WIKI, database, …. 都是可行的. 只要能把它變成 prompt 就可以改善 LLM 資訊不夠新 (knowledge cut off) 的幻覺 (Hallucination) 問題.

Give Myself a Pat on the Back

以前連假的時候, 我都會趁機讀完一兩本書. 不過這次我用它來完成我網課的最後一哩路. 這是一個 Coursera 的 AI TensorFlow Developer 學程, 裡面包括 4 個子課程.

Introduction to TensorFlow for Artificial Intelligence, Machine Learning, and Deep Learning
Convolutional Neural Networks in TensorFlow

Natural Language Processing in TensorFlow

Sequences, Time Series and Prediction

這個課程大概需要兩個月, 本來我想我好歹也算有個一知半解吧! 打算在免費試用七天的時間就把課程走完, 不過它還是有點難度, 所以我破功了. 只好為它花了註冊費. 接著我以生日前通過為目標, 失敗! 改為 2024/3/31 前通過, 又失敗! 總算在清明連假最後一天通過最後一個 Lab 了! 花了快一個月之久.

model = tf.keras.models.Sequential([ 
    tf.keras.layers.Conv1D(64, input_shape = [64, 1], kernel_size = 3, padding = 'causal', activation = "relu"),
    tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32,return_sequences = True)),
    tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)),
    tf.keras.layers.Dense(32, activation = "relu"),
    tf.keras.layers.Dense(16, activation = "relu"),
    tf.keras.layers.Dense(1),
    tf.keras.layers.Lambda(lambda x: x* 25)
]) 
model.compile(loss= tf.keras.losses.Huber(),
optimizer=tf.keras.optimizers.SGD(momentum = 0.9, learning_rate = 5e-4),
metrics=["mae"])

最後一堂課的結語是 give yourself a pat on the back. 所以我就拿它來當標題. 接下來找下一個可以學的東西.