超學習時代

最近的 Gemini 3 Pro 真的變比較聰明,所以我取消 Monica 的訂閱,改訂 Gemini。現在想要學習最新的技術,不但學校教不了;網路課程也教不了。就算是追著科技網紅,心裡沒有譜的話,也會像個無頭蒼蠅一樣、不會授粉只會傳播細菌,哈!

以 AI 技術來說,訓練模型、微調模型、RAG (檢索增強生成) 都是舊世代的技術。次世代的技術重點在於 Reasoning 和 Agency。雖然這個發展有跡可循、合情合理,但是沒有前面的跌跌撞撞,也絕不可能一步到位。短短一兩年之間,我們有了下面的這些進化。

[觀念改變]

一個 AI model 自己角色扮演 –> 建立認知架構:記憶、規畫、反思。

LangChain –> LangGraph, 線性思考 –> 非線性思考、圖論、立體化。

Funcation call –> Tool call。錯誤檢查和自我校正。

[模型調校]

Supervised Fine-Tuning、 RLHF (reinforcement learning from human feedback) –> DPO (Direct Preference Optimization)、IPO (Identity Preference Optimization)、KTO (Kahneman-Tversky Optimization)。

全能模型 –> SLERP (Spherical Linear Interpolation)、TIES-Merging。

自我對局 (Self-Play) 強化。

[In Model Learning]

Prompt –> DSPy (Declarative Self-improving Language Programs),透過 Compiler 自動尋找 Prompt 組合。

快問快答 –> Chain of Tought、Tree of Thought –> Test-Time Compute (有節制地想久一點,時間換取品質)

[模型評估]

BLEU、ROUGE 考試 –> LLM-as-a-Judge,自動評估

多元評價 – RAGAS

  • R:Retrieval(檢索)
  • A:Accuracy(準確性)
  • G:Generality(通用性)
  • A:Adherence(遵循性)
  • S:Stability(穩定性)

[多模態]

OCR + LLM –> 原生多模態 (Native Multimodel)、audio/video tokenization。

文字到文字 –> any-to-any interaction

上述有很多新的東西,也有一些半新半舊,我打算加強 Agentic、MCP 這方面的知識,然後快速進入 DSPy 的領域。

附帶一提,雖然退訂 Monica 可以省錢,但是我還不打算把 Coursera 停掉。因為上面還是有很多 Andrew Ng 開的短課程。愈長的課程愈容易過時、短課程甚至像  Andrej Karpathy 的 Youtube 都可能有一些最新的東西。至於 ArXiv 肯定好料滿滿,但是可能要叫 NoteLLM 幫我讀了。