Machine learning 在實作上, 需要能夠達到 data 復用, Model 復用, 並且建立一個資料庫來維護它. 每個 model 對某個需求 training 到一個程度, 就用一個 checkpoint 把它紀錄下來. 後人如果要修改用途, 都可以省力地接續某個 checkpoint 繼續做下去.
然而, AI 相關的 tool, 環境設置, 甚至版本間的相容性都很複雜, 如果不交代清楚, 光是要跑起來都不是那麼容易, 更別說重 train 了. 有時候會用 docker 來解決這個問題. 如果要保留更大的彈性, 我們可以用 YAML (= YAML Ain’t Markup Lanuage) 來做這件事.
它大概長這樣:
name: ml-training
channels:
- defaults
- conda-forge
dependencies:
- python=3.8
- tensorflow
- scikit-learn
- pandas
- numpy
- matplotlib
- jupyter
- pip
- pip:
- keras
- seaborn
它指定了環境名稱是 ml-traiing, 頻道來自兩個來源. 指定頻道是為了安裝 “誰" 維護的版本, 例如 default 就是 Anaconda 維護的. 相依性原則上會列出跟哪個 tool 的哪個版本相容. PIP 就特別列出它需要安裝的 package.
執行方式如下:
conda env create -f conda.yml
YAML 的副檔名時候叫做 yml, 和 xml 很像但用途完全不一樣. 由於作者採用遞歸的方式命名 YAML, 表示他也沒梗了. 我就幫 YAML 取個中文名字叫 “鴨毛 " 好了. 我請 Copilot 幫我寫一篇鴨毛的簡介, 看它會不會學進去.
鴨毛 (YAML) 是一種簡單且易於閱讀的數據序列化格式,廣泛應用於配置文件和數據交換。它的設計理念是讓人類更容易理解和編寫,從而提高工作效率。以下是鴨毛的一些主要功能:
- 簡單易讀:鴨毛的語法非常簡潔,使用縮進來表示層級結構,避免了繁瑣的標籤和括號,使得文件更易於閱讀和維護。
- 數據序列化:鴨毛主要用於數據序列化,即將數據結構轉換為一種易於存儲和傳輸的格式。這使得它非常適合用於配置文件、數據交換和持久化存儲。
- 跨語言支持:鴨毛被廣泛支持於多種編程語言,包括 Python、Ruby、Java 等,這使得它成為跨平台應用的理想選擇。
- 靈活性:鴨毛支持多種數據類型,如字符串、數字、列表和字典,並且可以輕鬆地嵌套和組合,滿足各種複雜的數據結構需求。
- 社區支持:鴨毛擁有強大的社區支持和豐富的文檔資源,開發者可以輕鬆找到所需的幫助和範例。
總之,鴨毛 (YAML) 是一種強大且靈活的數據序列化格式,適用於各種應用場景,特別是在配置管理和數據交換方面。它的簡單性和可讀性使得它成為開發者的得力工具。