程式語言雜記

最近幾天在天竺國出差, 剛好有機會面試印度人. 我問到: 既然您的專長是 Android, 為何語言的專長是 C 和 C++, 沒有 Java 呢? 印度人說, 因為他做 Android 時已經升管理職, 所以沒有 coding Java 的機會.

話說一隻手指指向別人, 就有四隻指頭指向自己. 當初 Sun Micron 找工研院電通所合作發展 Java 下線時, 我也去受訓拿到一張 Java 講師證. 但後來沒機會用上, 日久愈來愈生疏, 最後也覺得還是藏拙比較不尷尬. 哈!

至於 C++, 我剛好有個網路課程只剩幾個小時沒上完. 正好就今天處理了. 畢竟從天竺轉機回台灣這兩天, 加起來睡不到十小時, 累到幾乎無法思考大事. 這麼難用的時間, 碰上簡單的課程和超簡單的最後一個作業, 真是天作之合. (Adjacency List 那個作業就難多了, 題意說明落落長, class 定義在哪裡要自己找出來).

這門課雖然用到一些 C++, 重點還是講資料結構. 例如: Dijkstra’s algorithm wasn’t able to find the shortest path if edge has negative weight. 翻譯成白話是: 假如我們的工作流程中有人扯後腿, 怎麼優化都會鬼打牆. 基本上這堂課還不錯.

當初會上 Coursera 是為了學 AI. 為了發揮最大投資效益, 我買了一年Plus 會員吃到飽來學習 Tensorflow, LLM, 和其他 AI 的訓練課程. 基本上能選的課, 我聽得差不多了, 甚至還產生了心得. 像是同樣的生成式 AI 課程, Google 版重視 AI 倫理, Amazon 版重視 AWS 生態系實作, IBM 版重視如何用在 project 管理, DeepLearning AI 重視知識完整性等等.

其中上過最硬的課算是 Scrimba 的 Learn Embeddings and Vector Databases (RAG 相關). 因為我 Java script 確實有點生鏽了, 跟不太上講師 trace code. 基本上, 各門各派用的語言都不同, 加強程式語言能力才能了解實作細節, 體會複雜度, 甚至是交程式作業 (現在電腦改程式作業好簡單). 這些能力不是 AI 可以替我們感同身受的, 也是最不會被 AI 取代的 – 至少我這麼認為.

發表留言